|
Grado en Ingeniería Informática |
TRABAJOS FIN DE GRADO curso: 2022-23
Detección de fracturas de la columna cervical mediante técnicas de aprendizaje automático |
Tecnologías Específicas
Computación
Descripcion y Objetivos
Cada año se producen alrededor de un millón y medio de fracturas de la columna vertebral, lo cual se traduce en un alto número de lesiones de la médula espinal. De entre todos los tipos de fracturas de la columna vertebral, la más común es la cervical. De acuerdo con estudios recientes, se está produciendo un incremento de este tipo de lesiones en la población más anciana, lo cual dificulta el proceso de diagnóstico mediante imágenes, pues este tipo de pacientes suelen presentar, además, enfermedades degenerativas y osteoporosis. Por tanto, el diseño de métodos eficientes y precisos que sean capaces de detectar y determinar la localización de las fracturas de la columna vertebral es esencial para prevenir el deterioro neurológico y la parálisis.
En este trabajo fin de grado vamos a abordar el problema mediante el desarrollo de modelos de aprendizaje automático capaces de detectar y localizar fracturas en las siete vértebras que forman la columna cervical a partir de imágenes obtenidas mediante tomografía computarizada. Los datos que se van a usar provienen de la American Society of Neuroradiology (ASNR) y American Society of Spine Radiology (ASSR). La misión de estas organizaciones es promover el análisis informático de imágenes médicas a través de la educación, investigación e innovación multidisciplinar. Actualmente estos datos están disponibles en la plataforma Kaggle (https://www.kaggle.com/competitions/rsna-2022-cervical-spine-fracture-detection).
El objetivo de este trabajo fin de grado es estudiar el problema y proporcionar distintas soluciones al mismo, comparándolas desde un punto de vista formal (validación). Además, se proporcionará una aplicación software para realizar predicciones online. Con este fin planteamos los siguientes subobjetivos:
- Realizar un estudio de los datos disponibles (imágenes), realizando las transformaciones necesarias sobre los datos de entrada para poder abordar la tarea correspondiente, esto es, detección de fracturas de la columna cervical.
- Definir las distintas estrategias de predicción, abordando desde técnicas de deep learning a métodos clásicos de aprendizaje automático.
- Integrar el modelo de aprendizaje automático en una aplicación online para detectar fracturas de la columna cervical.
Metodología y Competencias
Metodología
- Revisar el contexto del problema y la literatura disponible.
- Realizar un análisis exploratorio de los datos existentes.
- Sobre la partición de datos de entrenamiento, diseñar procesos de minería de datos centrados en:
- Validación de los modelos obtenidos.
- Identificación de los algoritmos de minería de datos que mejor encajen en el problema objetivo.
- Preprocesamiento de datos (selección de variables, construcción de variables, etc.).
- Iterar refinando los pasos anteriores hasta determinar uno o varios modelos exitosos.
- Documentar todo el proceso anterior para que sea reproducible.
- Estimar la bondad de los modelos finales sobre el conjunto de datos de prueba reservado a tal efecto.
- Integrar los modelos finales en una aplicación web.
- Redactar la memoria.
Competencias
Se trabajarán principalmente (en distinto grado) las siguientes competencias específicas de la tecnología de computación:
- Capacidad para evaluar la complejidad computacional de un problema, conocer estrategias algorítmicas que puedan conducir a su resolución y recomendar, desarrollar e implementar aquella que garantice el mejor rendimiento de acuerdo con los requisitos establecidos.
- Capacidad para conocer los fundamentos, paradigmas y técnicas propias de los sistemas inteligentes y analizar, diseñar y construir sistemas, servicios y aplicaciones informáticas que utilicen dichas técnicas en cualquier ámbito de aplicación.
- Capacidad para adquirir, obtener, formalizar y representar el conocimiento humano en una forma computable para la resolución de problemas mediante un sistema informático en cualquier ámbito de aplicación, particularmente los relacionados con aspectos de computación, percepción y actuación en ambientes entornos inteligentes.
- Capacidad para conocer y desarrollar técnicas de aprendizaje computacional y diseñar e implementar aplicaciones y sistemas que las utilicen, incluyendo las dedicadas a extracción automática de información y conocimiento a partir de grandes volúmenes de datos.
Medios a utilizar
Ordenadores personales, compiladores y entornos de programación. Servicios de tarjetas gráficas para el entrenamiento e inferencia de redes neuronales profundas. Todo disponible en la ESIIAB, I3A o mediante servicios en la nube.
Bibliografía
Libros y manuales de inteligencia artificial y aprendizaje automático. Libros y manuales de lenguajes de programación y librerías específicas de aprendizaje automático. Todo disponible en la ESIIAB o internet.
Tutores GAMEZ MARTIN, JOSE ANTONIO ALFARO JIMENEZ, JUAN CARLOS | Alumno CABALLERO NAVARRO, DOMINGO JOSÉ
|
| |